
Algorithm For Optimal Implementation of Multiple-Valued Functions Using Switches

Dorin Sima, “Lucian Blaga” University, Bd. Victoriei No. 10, Sibiu, Romania; dorin.sima@ulbsibiu.ro
 Rodica Baciu, “Lucian Blaga” University, Bd. Victoriei No. 10, Sibiu, Romania; rodica.baciu@ulbsibiu.ro

Abstract: In this paper is presented an automatic
synthesis algorithm, developed by authors, used for
optimal ipmlementation of multiple-valued logic
functions(MVL functions) using multiple-valued
switches(MVL switches). The algorithm starts with
the representation of the multivalued logic functions
as Multivalued Decision Diagrams (MDD), from
which it extracts the expressions corresponding to
each switch Fi, represented by expression trees.
Further, one identify the rules that applied to the
nodes of the tree lead to lower cost of implementation
(smaller number of CMOS transistors). When no rule
can be applied any more, we have the minimal
expression of implementation for each switch Fi.

Keywords: Multiple-Valued Logic, MVL, Decision
Diagrams, MDD, MVL-Switches

INRODUCTION

The most stressing problems regarding binary VLSI are
those referring to interconnection, both on-chip and
between-chip. The accepted solution for these problems
consists of the Multiple-Valued Logic systems (MVL).
Stepping down of interconnections is due to the growing
of informational content in the digital signal, rated to the
binary case. In the last twenty years literature we find
remarkable achievements of MVL circuits in different
technologies: I2L, CCD, voltage-mode CMOS, current-
mode CMOS, etc. In the same time, variants of the Post
multivalued algebra have been searched, which are
closer to hardware implementation, so called
implementation-oriented algebras. Among the most
known algebras are those developed by Allen and
Givone, Vranesic algebra (for I2L, CCD) and Jain,
Bolton and Abd-El-Barr algebra (for current-mode
CMOS).
Hassan proposes a new direction (Hassan 1996). The
basic idea consists of the implementation of any MVL
function by replacing MVL gates by multiple-valued
switches (Fig. 1). Each MVL switch Fi is accomplished
by series, parallel or cascade interconnection of sub-
switches(Fig. 2). In (Hassan 1996) is shown a manual
method for optimal implementation of a multivalued
function, based on the enforcement of associativity,
commutativity and distributivity of the three types of
interconnection of subswitches. In this paper is presented
an automatic synthesis algorithm, developed by authors.

The algorithm starts with the representation of the
multivalued function as Multivalued Decision Diagrams
(MDD), from which it extracts the expressions
corresponding to each switch Fi, represented by
expression trees. Further, one identify the rules that
applied to the nodes of the tree lead to lower cost of
implementation (smaller number of CMOS transistors).
When no rule can be applied any more, we have the
minimal expression of implementation for each switch Fi

Fig. 1 MVL function implementation using MVL
switches

BACKGROUND

Multiple-valued switches

Let F be a multiple-valued input, multiple-valued output
function of n variables : x1, x2,…, xn.

F : P 1 x P 2 x . . . x P n -> Y
Each variable, x i, may take any pi values from a finite
set P i = {0, 1, . . . p i - 1}. The output function F may
take m values from the set Y = {0, 1, . . . m - 1}.

Fig. 2 Subswitches

Let Ti be a subset of Pi. The Literal of variable xi is
defined as the Boolean function:

xi Ti =




∈
∉

Ti xiif 1
Ti xiif 0

The Cofactor of F with respect to a variable xi taking a
constant value j is:

Fx j
i
 = F (x1, . . . xi-1, j , xi+1, . . . xn),

the resulting function depend on n -1 variables
Other notations for cofactor: Fxi=j, Fj

xi
Note: If F does not depend on xi, then Fxi=j =F.

The Shannon decomposition of a function F with respect
to a variable x i is:

F = Fx jxi

1 - pi

0j

j

i
.

=
=
∑ , where operations are max and min

Alternatively, the decomposition of a R-valued function
f(X) could be expressed by:

f(X)=∑
−

=

1R

0i
i o ϑ i (X), where ϑ i(X) is the i-th MVL switch

function and “o” is the transmission operator.



 ∈

=
else

TX f
)(i

OFF
iON

Xiϑ

Then, the i-th MVL switch is represented by Fi :
Fi(X)= i ° ϑ i(X)

=




⇒∉
⇔∈

OFF is)(TX if
ON is)(TX if

i

i

XOFF
Xi

i

i

ϑ
ϑ (1)

For example (from Hassan), the ternary function from
table 1 could be represented:

 Table 1. Multivalued logic function

∑
=

=
2

0i
21)x,x(f i*ϑ i (x1,x2)=0*ϑ0 (x1, x2) +1*ϑ1 (x1,

x2) + 2*ϑ2 (x1,x2) , where:

ϑ0 (x1, x2) =



 =∈

else
TxiON

0
)}2,2(),1,1(),1,0{(),(x f 021

ϑ1(x1, x2) =



 =∈

else0
)}2,0(),0,2{(),(x f 121 TxiON

ϑ2(x1, x2) =



 =∈

else0
)}2,1(),1,2(),0,1(),0,0{(),(x f 121 TxiON

Each switch Fi is composed from more elementary
elements called subswitches i.e. a switch with a single
variable as an input control (Fig. 2). The subswitch
shown in Fig. 2 is controlled by a R-valued variable x,
and “j” is the desired valued to be switched to output
when x is in the threshold set “t”:

xt(j)=


 ∈

else
t xif

OFF
j

(2)

j∈ S and t⊆ S, S =0, 1, 2,…,R-1
If Card(t)=1 than the corresponding subswitch is called
“unary subswitch”

More complicated switches could be obtained by
subswitches interconnection, as in figure 3. For more
details see (Hassan 1996).
The series and parallel interconnections are
commutative. These properties, together with
distributive law are used (in the Hassan’s paper) to give
the optimal implementation. Optimal means a minimum
number of CMOS transistors.

Multiple-valued Decisions Diagrams (MDD)

The state-of-the-art data structures used in the CAD
systems for internal representations of logical functions
are decision diagrams: Binary Decision Diagrams (BDD)
for binary functions and, MDD for the multivalued
functions. For more details about MDDs see (Kam 1995;
Drechsler 1998).
The ternary function f(x1, x2) from the above example
(Table 1) is represented by a MDD as in the Fig. 4. The
edges outgoing each node are labeled from left to right
with 0, 1 and 2. We can see that following all paths from
root to leaves, each path corresponds to an individual
row on truth table of the function.

x1 x2 f(x1, x2)
0 0 2
0 1 0
0 2 1
1 0 2
1 1 0
1 2 2
2 0 1
2 1 2
2 2 0

t1

t1

t2

t2
j

x1 x2

j

j

x2

x1

t1

t2j

x2

k

a)

b)

c)

Fig. 3 Subswitches connection:
a)series b)parallel c)cascade

OPTIMAL IMPLEMENTATION OF MVL
FUNCTIONS

In this section we present the algorithm that determines
the optimal expression of switches used to implement a
given MVL function. We suppose that the function to be
implemented is represented with MDD.

The algorithm has two main phases:
- Obtain the expressions Fi of the MVL switches
- Expressions minimization
Phase 1:Each path leading to a leaf “i”, gives a unique
combination of input variables. Or-ing the corresponding
expressions we get the expression for the switch Fi, as
interconnections of unary subswitches.
For example, for MDD in figure 4, the values of
variables on each path are:
• Paths to leaf 0:

 x1 x2 = 01, 11, and 22
• Paths to leaf 1:

 x1 x2 = 02 and 20
• Paths to leaf 2:

 x1 x2 = 00, 10, 12 and 21

As the result, the expressions for switches are:

F0(x1, x2) = x1

0(0)•x2
1(0) + x1

1(0)•x2
1(0) + x1

2(0)•x2
2(0)

F1(x1, x2) = x1
2(1)•x2

0(1) + x1
0(1)•x2

2(1)
F2(X1, X2) = x1

0(2)•x2
0(2) + x1

1(2)•x2
0(2) +

x1
2(2)•x2

1(2)+ x1
1(2)•x2

2(2)

Phase 2: Circuit minimization.
In this phase, we try to find the equivalent expressions
for switches Fi so that the number of transistors is
lowered.
We build cost-table that describes the cost of each unary
subswitch, i.e. the number of transistors contained in
each subswitch. The Table 2 shows the ternary
implementation with CMOS transistors (Hassan 1996)
Then, we represent each switch Fi as an expression tree.
In that tree the leaves represent unary subswitches and
internal nodes denote subswitches interconnections. In
figure 5 is the tree for F0. The symbol “•” denotes a
series, “+” a parallel and “#”cascade interconnection.
We define the cost of that tree recursively, as below:
- The cost of a leaf (corresponding to an unary
subswitch) is the number transistors on that
subswitch(from Table 2)

- The cost of an internal node is the sum of the
children subtrees.

SubSwitch Cost(nr of transistors)
x0(0) 3
x1(0) 5
x2(0) 6
x0(1) 1
x1(1) 6
x2(1) 1
x0(2) 6
x1(2) 5
x2(2) 2

x2(1,2)=x0,1(2,1) 2
x0(1,0)=x1,2(0,1) 2
x2(0,2)=x0,1(2,0) 3
x0(2,0)=x1,2(0,2) 3

Table 2 Cost table

The recursive function COST below returns the cost for
a node in the tree:
int COST (TreeNode node)
{
 if Leaf (node) then
 return (cost from tabele 2)
 else
 return (sum of costs of subtree of node)
}
For example, in figure 5 is the tree corresponding to F0

and the cost of the tree is 30.

From algebraic properties of the interconnection
operators (Hassan 1996), we found rules that, applied to
the tree nodes, decrease the cost of the tree.

- Distributive law of series-parallel interconnections
is depicted in figure 6.
- Rule R1, in figure 7, represents the series
interconnection property
- Rule R2, in figure 8, represents the parallel
interconnection property
- Rule R3, in figure 9, results from cascade
interconnection definition.

For example, using distributive law, the tree for F0 on
figure 5, become as in figure 9. The cost of resulting tree
is now 25. Applying other rules as follow, we have:

x1

x2

2 0 1

x2 x2

Fig. 4 The MDD representation of
the function f(x1,x2) (see Table 1)

•••• •••• ••••

X1
0(0) X2

1(0) X1
1(0) X1

2(0) X2
2(0)

+

Fig 5. Expression tree for F0. Cost(F0)=30

x0(0) + x1(0) =x0,1(0) (rule R2).
x0,1(0)=x0,1(2,0)#x1,2(0) (rule R3).
Rule R3 was applied because, from Table 2:
Cost(x0,1(0)) = 8 and Cost(x0,1(2,0)#x1,2(0))=4

The resulting tree is shown in figure 10. This is the best
value for F0: Cost(F0)=21

Finally we obtain the minimal expressions for the three
switches:
F0(x1,x2) = [x1

0,1(2,0)#x1
1,2(0)]•x2

1(0) + x1
2(0)•x2

2(0)
F1(x1,x2) = x1

2(1) •x2
0(1) + x1

0(1) •x2
2(1)

F2(x1,x2) = x1
0,1(2) •x2

0(2) + x1
2(2) •x2

1(2) + x1
1(2)

•x2
2(2)

The Optimisation Algorithm is:

TreeNode Optimisation (TreeNode node){
 // terminal case: an leaf
 if (Leaf(node)) return OptimalImplementation(node);

 if (R1) return (Optimisation (right part R1))
 if (R2) return (Optimisation(riht part R2))
 if (distributive law)
 applyDistributivity(node) // fig. 6

 //recursive call on each subtree
 for (each child_i of node){
 node.child(i)= Optimisation (child_i);
 }
}

CONCLUSIONS

In (Hassan 1996) is shown that the MVL switches could
offer a better solution for the MVL systems. In the above
paper the authors have used only manual minimisation
technique for logic minimisation. The algorithm
described in this paper complements the work done in
the cited paper, giving a systematic algorithm that
simplifies the minimisation techniques.

REFERENCES

Drechsler, R. , 1998- Verification of Multi-Valued Logic
Networks -Multiple-Valued Logic - An International
Journal, Volume 3, pp. 77-88

Hassan M. et al., 1996–A Framework for Design a
Multivalued Logic Functions and Its Application Using
CMOS ternary Switches – IEEE Transactions on
Circuits and Systems, Vol. 43 No.4, Apr.

Kam T. , 1995-State Minimization of Finite State
Machines using Implicit Techniques, - PhD
dissertation, ic.EECS.Berkeley.EDU

xt1(j) xt1(a, b) #xa U t(j),
 iff:a<>b si b ∉ t,

t ⊂ {0,1,2}

Fig. 9 Rule R3

+

xt1(j) xt2(j)

xt1 ∪ t2(j)

Fig. 8 Rule R2: parallel interconnections

A

+

• •

B A C

+

•

A

B C

Fig. 6. Series-Parallel distributive law +

•••• ••••

X1
0,1(2,0)

X2
1(0)

X1
1,2(0)

X1
2(0) X2

2(0)

Fig.10 Final tree for F0. Cost (F0)=21

xt1(j) xt2(j)

xt1 ∩t2(j)

Fig. 7 Rule R1: series interconnections

