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Abstract: In this paper is presented an automatic 
synthesis algorithm, developed by authors, used for 
optimal ipmlementation of multiple-valued logic 
functions(MVL functions) using multiple-valued 
switches(MVL switches). The algorithm starts with 
the representation of the multivalued logic functions 
as Multivalued Decision Diagrams (MDD), from 
which it extracts the expressions corresponding to 
each switch Fi, represented by expression trees. 
Further, one identify the rules that applied to the 
nodes of the tree lead to lower cost of implementation 
(smaller number of CMOS transistors). When no rule 
can be applied any more, we have the minimal 
expression of implementation for each switch Fi. 
 
Keywords: Multiple-Valued Logic, MVL, Decision 
Diagrams, MDD, MVL-Switches 
 
INRODUCTION 
 
The most stressing problems regarding binary VLSI are 
those referring to interconnection, both on-chip and 
between-chip. The accepted solution for these problems 
consists of the Multiple-Valued Logic systems (MVL). 
Stepping down of interconnections is due to the growing 
of informational content in the digital signal, rated to the 
binary case. In the last twenty years literature we find 
remarkable achievements of MVL circuits in different 
technologies: I2L, CCD, voltage-mode CMOS, current-
mode CMOS, etc. In the same time, variants of the Post 
multivalued algebra have been searched, which are 
closer to hardware implementation, so called 
implementation-oriented algebras. Among the most 
known algebras are those developed by Allen and 
Givone, Vranesic algebra (for I2L, CCD) and Jain, 
Bolton and Abd-El-Barr algebra (for current-mode 
CMOS). 
Hassan proposes a new direction (Hassan 1996). The 
basic idea consists of the implementation of any MVL 
function by replacing MVL gates by multiple-valued 
switches ( Fig. 1). Each MVL switch Fi is accomplished 
by series, parallel or cascade interconnection of sub-
switches(Fig. 2). In (Hassan 1996) is shown a manual 
method for optimal implementation of a multivalued 
function, based on the enforcement of associativity, 
commutativity and distributivity of the three types of 
interconnection of subswitches. In this paper is presented 
an automatic synthesis algorithm, developed by authors. 

The algorithm starts with the representation of the 
multivalued function as Multivalued Decision Diagrams 
(MDD), from which it extracts the expressions 
corresponding to each switch Fi, represented by 
expression trees. Further, one identify the rules that 
applied to the nodes of the tree lead to lower cost of 
implementation (smaller number of CMOS transistors). 
When no rule can be applied any more, we have the 
minimal expression of implementation for each switch Fi 

 
Fig. 1 MVL function implementation using MVL 
switches 

 
BACKGROUND 
 
Multiple-valued switches 
 
Let F be a multiple-valued input, multiple-valued output 
function of n variables : x1, x2,…, xn.  

F  :  P 1  x P 2  x . . . x P n  -> Y 
Each variable, x i, may take any pi values from a finite 
set P i = {0, 1, . . . p i - 1}. The output function F may 
take m values from the set Y = {0, 1, . . . m - 1}. 

Fig. 2 Subswitches 



Let Ti be a subset of Pi. The Literal of variable xi is 
defined as the Boolean function:  
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The Cofactor of F with respect to a variable xi taking a 
constant value j is:  

Fx j
i
  =  F (x1, . . . xi-1,  j  , xi+1, . . . xn),  

the resulting function depend on  n -1 variables 
Other notations for cofactor: Fxi=j, Fj 

xi 
Note: If F does not depend on xi, then Fxi=j =F. 

The Shannon decomposition of a function F with respect 
to a variable x i is: 

F = Fx jxi
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Alternatively, the decomposition of a R-valued function 
f(X) could be expressed by: 
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Then, the i-th  MVL switch is represented by Fi : 
Fi(X)=  i ° ϑ i(X)   
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For example (from Hassan), the ternary function from 
table 1 could be represented: 
 

 Table 1. Multivalued logic function 
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Each switch Fi is composed from more elementary 
elements called subswitches i.e. a switch with a single 
variable as an input control (Fig. 2). The subswitch 
shown in Fig. 2 is controlled by a R-valued variable x, 
and “j” is the desired valued to be switched to output 
when x is in the threshold set “t”: 
 

xt(j)=
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else
t xif

OFF
j

(2)

j∈ S and t⊆ S, S =0, 1, 2,…,R-1
If Card(t)=1 than the corresponding subswitch is called 
“unary subswitch” 

More complicated switches could be obtained by 
subswitches interconnection, as in figure 3. For more 
details see (Hassan 1996). 
The series and parallel interconnections are 
commutative. These properties, together with 
distributive law are used (in the Hassan’s paper) to give 
the optimal implementation. Optimal means a minimum 
number of CMOS transistors.  
 
Multiple-valued Decisions Diagrams (MDD) 
 
The state-of-the-art data structures used in the CAD 
systems for internal representations of logical functions 
are decision diagrams: Binary Decision Diagrams (BDD) 
for binary functions and, MDD for the multivalued 
functions. For more details about MDDs see (Kam 1995;
Drechsler 1998). 
The ternary function f(x1, x2) from the above example 
(Table 1) is represented by a MDD as in the Fig.  4.  The 
edges outgoing each node are labeled from left to right 
with 0, 1 and 2. We can see that following all paths from 
root to leaves, each path corresponds to an individual 
row on truth table of the function. 

x1 x2 f(x1, x2) 
0 0 2 
0 1 0 
0 2 1 
1 0 2 
1 1 0 
1 2 2 
2 0 1 
2 1 2 
2 2 0 
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Fig. 3 Subswitches connection: 
a)series b)parallel c)cascade 



OPTIMAL IMPLEMENTATION OF MVL 
FUNCTIONS 
 
In this section we present the algorithm that determines 
the optimal expression of switches used to implement a 
given MVL function. We suppose that the function to be 
implemented is represented with MDD. 

The algorithm has two main phases: 
- Obtain the expressions Fi of the MVL switches 
- Expressions minimization 
Phase 1:Each path leading to a leaf “i”, gives a unique 
combination of input variables. Or-ing the corresponding 
expressions we get the expression for the switch Fi, as 
interconnections of unary subswitches.  
For example, for MDD in figure 4, the values of 
variables on each path are: 
• Paths to leaf 0: 

 x1 x2 = 01, 11, and 22 
• Paths to leaf 1: 

 x1 x2 = 02 and 20 
• Paths to leaf 2: 

 x1 x2 = 00, 10, 12 and  21 
 
As the result, the expressions for switches are: 
 
F0(x1, x2) = x1

0(0)•x2
1(0) + x1

1(0)•x2
1(0) + x1

2(0)•x2
2(0) 

F1(x1, x2) = x1
2(1)•x2

0(1) + x1
0(1)•x2

2(1) 
F2(X1, X2) = x1

0(2)•x2
0(2) + x1

1(2)•x2
0(2) + 

x1
2(2)•x2

1(2)+ x1
1(2)•x2

2(2) 
 
Phase 2: Circuit minimization.  
In this phase, we try to find the equivalent expressions 
for switches Fi so that the number of transistors is 
lowered. 
We build cost-table that describes the cost of each unary 
subswitch, i.e. the number of transistors contained in 
each subswitch. The Table 2 shows the ternary 
implementation with CMOS transistors (Hassan 1996) 
Then, we represent each switch Fi as an expression tree. 
In that tree the leaves represent unary subswitches and 
internal nodes denote subswitches interconnections.  In 
figure 5 is the tree for F0.  The symbol “•” denotes a 
series,  “+” a parallel and “#”cascade interconnection. 
We define the cost of that tree recursively, as below: 
- The cost of a leaf (corresponding to an unary 
subswitch) is the number  transistors on that 
subswitch(from Table 2) 

- The cost of an internal node is the sum of the 
children subtrees. 

SubSwitch Cost(nr of transistors) 
x0(0) 3 
x1(0) 5 
x2(0) 6 
x0(1) 1 
x1(1) 6 
x2(1) 1 
x0(2) 6 
x1(2) 5 
x2(2) 2 

x2(1,2)=x0,1(2,1) 2 
x0(1,0)=x1,2(0,1) 2 
x2(0,2)=x0,1(2,0) 3 
x0(2,0)=x1,2(0,2) 3 

Table 2 Cost table 

 
The recursive function COST below returns the cost for 
a node in the tree: 
int COST (TreeNode    node) 
{ 
    if  Leaf (node) then 
            return (cost from tabele 2 ) 
    else    
           return (sum of costs of subtree of node) 
}
For example, in figure 5 is the tree corresponding to F0 

and the cost of the tree is 30. 
 
From algebraic properties of the interconnection 
operators (Hassan 1996), we found rules that, applied to 
the tree nodes, decrease the cost of the tree.  
 
- Distributive law of series-parallel interconnections 
is depicted in figure 6. 
- Rule R1, in figure 7, represents the series 
interconnection property 
-  Rule R2, in figure 8, represents the parallel 
interconnection property  
- Rule R3, in figure 9, results from cascade 
interconnection definition. 
 
For example, using distributive law, the tree for F0 on 
figure 5, become as in figure 9. The cost of resulting tree 
is now 25. Applying other rules as follow, we have: 
 
 

 

x1 

x2 

2 0 1 

x2 x2

Fig. 4 The MDD representation of  
the function f(x1,x2) (see Table 1) 

••••  •••• ••••  

X1
0(0) X2

1(0) X1
1(0) X1

2(0) X2
2(0) 

+

Fig 5. Expression tree for F0. Cost(F0)=30 



x0(0) + x1(0) =x0,1(0) ( rule R2 ).  
x0,1(0)=x0,1(2,0)#x1,2(0) ( rule R3 ).  
Rule R3 was applied because, from Table 2: 
Cost(x0,1(0)) = 8 and Cost(x0,1(2,0)#x1,2(0))=4 
 
The resulting tree is shown in figure 10. This is the best 
value for F0: Cost(F0)=21 
 
Finally we obtain the minimal expressions for the three 
switches:  
F0(x1,x2) = [x1

0,1(2,0)#x1
1,2(0)]•x2

1(0) + x1
2(0)•x2

2(0) 
F1(x1,x2) = x1

2(1) •x2
0(1) + x1

0(1) •x2
2(1) 

F2(x1,x2) = x1
0,1(2) •x2

0(2) + x1
2(2) •x2

1(2)  + x1
1(2) 

•x2
2(2) 

 

 

 
The Optimisation Algorithm is: 
 
TreeNode Optimisation (TreeNode   node){ 
  //  terminal case: an leaf 
  if (Leaf(node))    return OptimalImplementation(node); 
   
  if (R1)  return (Optimisation (right part R1) ) 
  if (R2)  return (Optimisation(riht part R2) ) 
  if (distributive law)   
       applyDistributivity(node) // fig. 6 
   
  //recursive call on each subtree 
  for ( each child_i of node){ 
     node.child(i)= Optimisation (child_i); 
  } 
} 
 
 
 
 
 
 
 
 

 
CONCLUSIONS 
 
In (Hassan 1996) is shown that the MVL switches could 
offer a better solution for the MVL systems. In the above 
paper the authors have used only manual minimisation 
technique for logic minimisation. The algorithm 
described in this paper complements the work done in 
the cited paper, giving a systematic algorithm that 
simplifies the minimisation techniques. 
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Fig.10 Final tree for F0.  Cost (F0)=21 
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Fig. 7 Rule R1: series interconnections 


